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Functional Approach to Quantum Decoherence and
the Classical Final Limit: The Mott and
Cosmological Problems
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Decoherence and the approach to the classical final limit are studied in two
similar cases: the Mott and the cosmological problems.

1. INTRODUCTION

One of the most important problems of theoretical physics in the recent
years is the question: How and in what circumstances does a quantum system
become classical [1]? In spite of great effort, the problem remains [2] and
we are far from a complete understanding of many of its most fundamental
features. In fact the most developed and sophisticated theory on the subject,
decoherent histories, is not free of strong criticism [3].

For conceptual reason we will decompose the limit quantum mechanics
→ classical mechanics into two processes: quantum mechanics → classical
statistical mechanics and quantum statistical mechanics → classical mechan-
ics. There is almost unanimous opinion that the first process is produced by
two phenomena:

(i) Decoherence, which in quantum systems restores the Boolean statistic
typical of quantum mechanics.

(ii) The limit " → 0, which circumvents the uncertainty relation at the
macroscopic level and allows one to find the classically behaved density
functions via the Wigner integral.
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The second process is produced by these phenomena plus the localization
(or production of correlation) phenomenon [4]. We will discuss the first
process and briefly deal with the second at the end of each section.

The techniques to deal with the two phenomena related with the first
process are not yet completely developed. One of the main problems is to
find a proper and unambiguous definition of the so-called pointer basis where
decoherence takes place.

Our contribution to solving this problem is based in the ideas of Segal
[5, 6] and van Howe [7], reformulated by Antoniou et al. [8]. We have
developed these ideas in refs. 9 and 10, where we have shown how the
Riemann–Lebesgue theorem can be used to prove the destructive interference
of the off-diagonal terms of the state density matrix yielding decoherence.
Using this technique, we have found decoherence and the classical statistical
equilibrium limit in simple quantum systems [4] where we have defined the
final pointer basis in an unambiguous way.3 In addition, the localization
phenomenon appears in some cases.

This paper gives two examples of the method introduced in refs. 9 and
10, which we briefly review in Section 2, and used to find a general solution
for the quantum-classical limit in ref. 4.

In Section 3, the method will be used to solve the problem known as
“the Mott problem,” after Sir Neville Mott, probably the first to study the
subject [11]. Let us consider a radioactive nucleus, placed at the origin of
coordinates O, inside a bubble chamber. We will see that classical radial
trajectories appear in the chamber due to the emitted outgoing particles. We
must explain this phenomenon. Theoretically we have a timeless structure,
since the wave function c(x) satisfies the eigenvalue equation

Hc 5 vc (1)

where

H 5 2
1

2M
1
r 2



r
r 2 

r
1

L2

2Mr 2 1 W(r) (2)

with W(r) the spherically symmetric potential barrier, which is the external
wall of a potential well, and such that limr→` W(r) 5 0. This will be our
model for the nuclear forces [12]. Let us observe that there is no trace of
the time in these equations.

The main problem is that, even if the symmetry is a spherical one, there
is no a priori reason to explain why the classical trajectories are radial. We
have the following list of facts to explain:

3 The relation of our method to decoherent histories is studied in ref. 4. They turn out to be
equivalent, but in our method the final pointer basis is more properly defined.
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(i) Why does the nucleus quantum regime become the classical regime
for the classical trajectories?

(ii) Why are these classical trajectories radial?
(iii) Why does the notion of time, necessary to explain the motion of

the classical radial particles, appear in a timeless formalism, i.e., in that of
Eq. (1).

(iv) Why are there only outgoing motions?4

At this stage we must observe that this set of problems is very similar
to those of quantum cosmology, where, in fact, we must explain the outcome
of the classical regime, the appearance of time, the nature of the classical
trajectories in superspace, and the direction of the corresponding motion, i.e.,
the arrow of time. Then several of the most important quantum universe
problems that we will discuss in the second example are already contained
in our humble Mott model,

In Section 4 we consider our second example: the quantum cosmology
problem, since the appearance of a classical universe in quantum gravity
models is the cosmological version of the first problem. Then, decoherence
must also appear in the universe [13].

In this paper, using our method, we will solve the two examples and
we will find:

(i) Decoherence in all the dynamical variables and in a well-defined
final pointer basis.

(ii) A final classical equilibrium limit, when " → 0, in such a way that
the Wigner function F W

* 5 r(cl)
* of the asymptotic diagonal matrix r* can be

expanded as (e.g., in the cosmological problem)

r(cl)
* ([x], [k]) 5 # p{l}[a]r(cl)

{l}[a0]([x], [k]) d{l} d[a] (3)

where r(cl)
{l}[a0]([x], [k]) is a classical density strongly peaked5 in a trajectory

defined by the initial coordinates a and momenta l, and p{l}[a] is the probability
of each trajectory. As essentially the limit of quantum mechanics is not
classical mechanics, but classical statistical mechanics, this is our final result:
the density matrix is translated in a classical density, via a Wigner function,

4 But let us complete the first example by discussing the role of the global atmosphere of the
bubble chamber in our problem. This role is nonessential and really just incidental. In fact,
if there were no bubble chamber, at least for r → ` the classical trajectories would also be
radial, since in this case, any small detector located far enough from the origin would find
radial motions. Furthermore, it would be very difficult to believe that these radial motions
are produced only by the small detector. Then the radial motion exists even if there is no
bubble chamber and it is a mistake to consider that it is the bubble chamber that, acting as
an environment, produces the radial structure. But we must remark that there is a measurement
in both cases and therefore the measurement process is essential.

5 Precisely: peaked as allowed by the uncertainty principle.
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and it is decomposed as a sum of densities peaked around all possible classical
trajectories, each one of these densities weighted by its own probability.6

Thus our quantum density matrix behaves in its classical limit as a
statistical distribution among a set of classical trajectories. Similar results,
for the cosmological case, are obtained in refs. 14 and 15.

We will return to these conclusions in Section 5.

2. REVIEW OF THE METHOD

In order to go from the quantum to the classical statistical regime two
new properties must appear:

(i) Decoherence: The density matrices, which contain quantum interfer-
ence terms, must become diagonal, in such a way that these interferences
are suppressed. Then the quantum way to find probabilities of exhaustive
events (i.e., adding the corresponding amplitude and computing the norm)
becomes the classical way: just adding the probabilities.

(ii) The limit " → 0: The positions and the momenta (or more generally
canonically conjugate dynamical variables) can be defined as allowed by the
uncertainty principle, but large scales (i.e., when " → 0) allow us to consider
both the position and the momentum as independent dynamical variables, as
in classical mechanics. Of course this independence is the essential property
for finding a classical behavior.

These two closely related properties introduce classical statistical behav-
ior in the quantum formalism. Let us begin with decoherence.

We are only interested in scattering states with continuous spectrum,
e.g., for the first example, the Mott problem, the radial outgoing particles
are described by these states. To obtain the Hamiltonian eigenbasis of the
Hilbert space * we can consider, e.g., the Hamiltonian (2) and construct the
Lippmann–Schwinger basis {.v1&} [27] (really .v, l, n1&), where v is
partially discrete and partially continuous, e.g., it will have some v0 for the
ground state and a continuous v for the scattering states, but for the moment
we will consider only the continuous index v (since we are only interested
in these states7). Of course, we can as well use {.v2&}. Then the Hamiltonian
can be diagonalized as

H 5 #
`

0

v.v1&^v1. dv (4)

From this expression we can deduce that the most general observable that
we can consider reads

6 After the classical statistical regime is reached correlations will eventually produce a pure
classical regime.

7 Bound states are considered in refs. 9 and 10.
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O 5 #
`

0

Ov.v1&^v1. dv 1 #
`

0
#

`

0

Ovv8.v1&^v81. dv dv8 (5)

where the functions Ov, Ovv8 are regular, namely, the most general observable
must have a singular component (the first term of the rhs of the last equation)
and a regular part (the second term). If the singular term were to be missing,
the Hamiltonian would not belong to the space of the chosen observables
[9]. Then O P 2 , * % (* ^ *) since some extra conditions must be
added [9]. This space has the basis {.v), .v, v8)}:

.v) 5 .v1&^v1., .v, v8) 5 .v1&^v81. (6)

The regular quantum state r is measured by the observables just defined,
computing the mean values of these observable in the quantum states ^O&r 5
Tr(rO) [16]. These mean values can be considered as linear functionals r on
the vectors O. Then the notion of state can be generalized to any linear
functional over 2, which we can call (r.O) [6]. In this way not only regular
states, but singular states can be defined. Moreover, as r must be normalized,
self-adjoint, and positive definite, r P 6 , 28, where 6 is a convex set
contained in 28 [9, 10]. The basis of 28 is {(v., (v, v8.}. These states are
defined as functionals by the equations

(v.v8) 5 d(v 2 v8), (v, v9.v8, v-) 5 d(v 2 v8)d(v9 2 v-) (7)

Therefore a generic quantum state reads

r 5 #
`

0

rv(v. dv 1 #
`

0
#

`

0

rvv8(v, v8. dv dv8 (8)

where rv $ 0, rvv8 5 r*v8v. The states such that rv Þ rvv will be called
generalized states [9] and those such that rv 5 rvv are the usual regular
mixed or eventually pure states. To continue, even if the time is not strictly
defined [since we have only Eq. (1)], let us postulate that there is a symmetry
in the system with a symmetry group e2iHt. At this level of reasoning this is
a global fact imposed by the structure of the universe where we suppose the
model is immersed (we will come back to this problem in Section 3.3.1; of
course this will also be the case in the cosmological example because the
problem of time definition is the same). Then the time evolution of the
quantum state r reads
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r(t) 5 #
`

0

rv(v. dv 1 #
`

0
#

`

0

rvv8ei(v2v8)t(v, v8. dv dv8 (9)

As in the statistical level we are considering we only measure mean values
of observables in quantum states, i.e.,

^O&r(t) 5 (r(t).O)

5 #
`

0

rvQv dv 1 #
`

0
#

`

0

rvv8Ovv8e2i(v2v8)t dv dv8 (10)

using the Riemann–Lebesgue theorem, we obtain the weak limit, for all O P
2, r P 6:

lim
t→`

^O&r(t) 5 ^O&r*
(11)

where we have introduced the diagonal equilibrium state

r* 5 #
`

0

rv(v. dv (12)

Therefore, in a weak sense we have

W lim
t→`

r(t) 5 r* (13)

Thus, any quantum state goes to an equilibrium diagonal state weakly, and
that will be the result if we observe and measure the system evolution with
any possible observable of space 2, e.g., for the first example, with a global
bubble chamber (or with any of the local small detectors of footnote 4 in
Section 1). Then, from the observational point of view we have decoherence
of the energy levels, even if from the strong limit point of view the off-
diagonal terms never vanish, they just oscillate [Eq. (9)]. So, from now on,
as we will consider the matrix r(t) for large t, e.g., for the first example, far
away from the nucleus, the relevant state will be r*, a diagonal state in
the energy.

Some observations are in order:
(i) The real existence of the two singular parts introduced above is

assured by the nature of the problem. The singular part of the observables
is just a necessary generalization of the singular part of the Hamiltonian,
which is completely singular [Eq. (4)]. The singular part of the states is the
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final state for decoherence [Eq. (12)]. (r.O) is just the natural generalization
to the continuous of the trace of the product of two finite-dimensional matrices
[Eq. (10)].

(ii) To fully understand the phenomenon, it is necessary to use general-
ized states. Therefore, any explanation only based on pure wave function
states or mixed states is incomplete.8

Having established the decoherence in the energy, we must consider the
decoherence in the other dynamical variables. Before going to the model, let
us study the general case (we will repeat this reasoning in Sections 2.2 and
4.2, with the notation corresponding to each case). The diagonal singular
component of Eq. (9) (which is equal to r*) is time independent, therefore
it is impossible that a different decoherence process takes place in this
component to eliminate the off-diagonal terms in the other dynamical vari-
ables. Therefore, the only thing to do is to try to find if there is a basis where
these diagonal terms vanish at any time and therefore there is a perfect and
complete decoherence. For t → ` this basis in fact exists and it is known
as the final pointer basis.

Let {H, O1, . . . , ON} be the usual complete set of commuting observables
(CSCO) that we are using to make our calculations and {.v, m1, . . . , mN1&}
(which we will simply call {.v, m1, . . . , mN&} from now on) the corresponding
eigenbasis. Then introducing the new indices in Eq. (12), we obtain for the
equilibrium diagonal state

r*

5 # o
m1,...,mN,m81,...,m8N

r(v)
m1,...,mN,m81,...,m8N(v, m1, . . . , mN , m81, . . . , m8N. dv (14)

From what we have said under Eq. (8) we have

(r(v)
m1,...,mN,m81,...,m8N)* 5 r(v)

m81,...,m8N,m1,...,mN (15)

Therefore this matrix can be diagonalized and there is a basis {(v, l1, . . . ,
lN.} where the matrix r* reads

8 Now an incidental question for the first example would be: which energies? In the first example
the potential well, surrounded by the barrier, W(r) originates unstable levels with energy vn
which decay with a decaying time g21

n . Inside the well there are oscillating waves that can
be used to fulfill the boundary conditions at r 5 0. When these waves arrive at the barrier
they are partially reflected and transmitted [12]. The states that tunnel the barrier appear with
an energy that peaks strongly at vn [9, 17]. Therefore the energy of the outgoing particles is
in the form of energy packets ,d(v 2 vn), and therefore could be essentially labeled with
n. But taking into account that the energy spectrum is really a continuous one, we will always
refer to it as v.
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r* 5 # o
l1,...,lN

r(v)
l1,...,lN(v, l1, . . . , lN. dv (16)

Now we can define the observables

Pi 5 # o
l1,...,lN

P (i,v)
l1,...,lN(v, l1, . . . , lN. dv (17)

and the CSCO {H, P1, . . . , PN}, where the singular component r* is diagonal
in the dynamical variables corresponding to the observables P1, . . . , PN from
the very beginning. This is the final pointer basis where there is perfect
decoherence. The final pointer basis is therefore defined by the dynamics of
the model and by the quantum state considered, in complete agreement with
the literature on the subject. The classical statistical limit will be complete
if we transform all these equations via a Wigner integral as we will in each
example using the corresponding notation.

3. THE MOTT PROBLEM

3.1. Decoherence

After these general considerations let us now go to our first problem.
The Hamiltonian of Eq. (2) can be decomposed as

H 5 H0 1 V (18)

H0 5 2
1

2M
1
r 2



r
r 2 

r
1

L2

2Mr 2 (19)

V 5 W(r) (20)

allowing the definition of the Lippmann–Schwinger basis.
Its essential property is its spherical symmetry. We will see how this

symmetry leads directly to the result above, avoiding the diagonalization
procedure used in Section 2. In order to conserve this symmetry, it is necessary
that the nucleus prepares only spherically symmetric states. Thus, we can
foresee that the CSCO corresponding to the pointer basis must contain the
generator of angular rotation, so it must be {H, L2, Lz}. The pointer basis
must then be the usual {.v, l, m&} basis.

In fact, let us consider an initial state functional r0 with spherical symme-
try. If L is the generator of the density rotations, a rotation of the state by
an angle w gives r0 5 exp{2iL ? w}r0, or equivalently

(exp{2iL ? w}r0.O) 5 (r0. exp{iL ? w}O exp{iL ? w})

for any observable O P 2. In the last expression, L is the angular momentum
operator. From the last equation we obtain
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(Lr0.O) 5 (r0.[L, O]) 5 0 (21)

The observable O has the form

O 5 o
lm

o
l8m8

# dv Olm,l8m8(v).vlm&^vl8m8.

1 o
lm

o
l8m8

## dv dv8 Olm,l8m8(v, v8).vlm&^v8l8m8. (22)

and therefore Eq. (21) gives

(r0.[L, .vlm&^v8l8m8.]) 5 0 (23)

These equations are equivalent to

(r0.[Lz , .vlm&^v8l8m8.]) 5 0

(r0.[L6, .vlm&^v8l8m8.]) 5 0, L6 5 Lx 6 Ly (24)

Taking into account that

Lz.l, m& 5 m.l, m&, L6.l, m& 5 !l(l 1 1) 2 m(m 6 1).l, m 6 1& (25)

we obtain

0 5 (m 2 m8)(r0|v, l, m&^v8, l8, m8.)

0 5 !l(l 1 1) 2 m(m 6 1)(r0|v, l, m 6 1&^v8, l8, m8.) (26)

2 !l8(l8 1 1) 2 m8(m8 7 1)(r0|v, l, m&^v8, l8, m8 7 1.)

both for v 5 v8 and v Þ v8. These equations give

(r0|v, l, m&^v8, l8, m8.) 5 r0
l (v, v8) dll8 dmm8 (27)

(r0|v, l, m&^v, l8, m8.) 5 r0
l (v) dll8 dmm8

Thus any symmetric r0 is diagonal in l and m. We will repeat the conclusion
of the previous section and see, in this particular case, how the time evolution
produces the diagonalization: namely r0

l (v, v8) will vanish when t → `. As
in Eq. (10), the time evolution reads

^O&rt 5 (rt.O) 5 (r0.eiHtOe2iHt)

5 # dv o
`

l50
r0

l (v) o
1l

m52l
Olm,lm(v)

1 # dv # dv8 o
`

l50
r0

t (v, v8) exp{i(v 2 v8)t}
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3 o
1l

m52l
Olm,lm(v, v8) (28)

The Riemann–Lebesgue theorem can be used in this expression to obtain
the “final” state

^O&r*
5 (r*.O) 5 lim

t→`
(rt.O) 5 # dv o

`

l50
r0

t (v) o
1l

m52l
Olm,lm(v) (29)

where r0
l (v, v8) has disappeared. If we define, in analogy to Eqs. (6) and

(7), the functional (v, l, m. acting on an observable O of the form given in
Eq. (22) by (v, l, m.O) 5 Olm,lm(v), we can give the following expression
for the asymptotic form of the state:

(r*. 5 W lim
t→`

(rt.O) 5 # dv o
`

l50
r0

l (v) o
1l

m52l
(v, l, m. (30)

Of course (r*. is also spherically symmetric since it is symmetric in l
and m. We do not address in this paper the mechanism used by the nucleus
to prepare the states in such a spherically symmetric way. But we are just
studying the case where all the elements of the nucleus are spherically
symmetric, and also the quantum states involved, because we are precisely
trying to explain the breaking of this symmetry and the appearance of the
radial structure. Then, it is clear that the only possibility is to begin with a
spherically symmetric structure and with states that satisfy the above
equations.

Therefore:
(i) The origin of the decoherence in the energy is the time evolution.
(ii) The origin of the decoherence in the angular variables is the prepara-

tion of the quantum state, which is spherically symmetric in our model. This
symmetry is preserved by the time evolution.

Let us observe that, as our model is spherically symmetric, any CSCO
{H, L2, Lz}, for any arbitrary z axis, will correspond to the final pointer basis.
But if the symmetry were cylindrical along the axis z, as the center of an
angular coordinate w with generator Lz , the only CSCO related to a final
pointer basis for the cylindrical quantum states would be {H, pz , Lz}. So we
see how the symmetry of the equation and the states defines the final pointer
bases and their number.

3.2. The Limit " → 0 and the Classical r(cl)
* (q, p)

Let us now compute the classical analogue of r*, as promised at the
end of Section 2. We will prove that the distribution function r(W)

* (q, p) that
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corresponds to the density matrix r* via the Wigner integral [18] is simply
a function of the classical constant of the motion, in our case H(q, p), L2(q,
p), Lz(q, p); precisely,

r(W)
* (q, p) 5 r*(H(q, p), L2(q, p), Lz(q, p)) (31)

To simplify the demonstration, let us consider only the constant H(q, p).
From Eq. (12) we have

r* 5 # r*(v)(v. dv (32)

So we must compute

r(W)
v (q, p) 5 p21 # (v|q 1 l&^q 2 l.)e2ipl dl (33)

We know, from ref. 9, Section IIC, that the characteristic property of (v. is

(v.H n) 5 vn (34)

Using the relation between quantum and classical inner products of operators
[ref. 18, Eq. (2.13)], we deduce that the characteristic property of
r(W)

v (q, p) is

# r(W)
v (q, p)[H(q, p)]n dg dp 5 vn 1 O(") (35)

for any natural number n. From now on we will work in the limit " → 0
and therefore all the O(") will disappear. Thus r(cl)

v (q, p) must be

r(W)
v (q, p) 5 d(H(q, p) 2 v) . 0 (36)

which turns out to be a distribution, namely a functional as r*. Therefore,
going back to Eq. (32) and since the Wigner relation is linear, we have

r(W)
* (q, p) 5 # r*(v)r(W)

v (q, p) dv

5 # r*(v)d(H(q, p) 2 v) dv 5 r*(H(q, p)) . 0 (37)

QED

Generalizing this reasoning, we can prove Eq. (31). Moreover the gener-
alized equation (37) reads
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r(W )
* (q, p) 5 # o

l,m
r*(v, l, m) r(W )

v,l,m(q, p) dv (38)

where r*(v, l, m) 5 r0
l (v) of Eq. (27),9 and r(W )

v,l,m(q, p) reads

r(W )
v,l,m(q, p) 5 d(H(q, p) 2 v)d(L2(q, p) 2 l(l 1 1))d(Lz(q, p) 2 m) (39)

and can be interpreted as the state where v, l, m are well defined and the
corresponding classical canonically conjugated variables completely unde-
fined since r(W )

v,l,m is not a function of these variables. Then there is a complete
coincidence with the result of the previous section. From the last two equations
we obtain (31) as promised. Now all the classical canonically conjugate
variables of the momenta H, L2, Lz do exist since they can be found by
solving the corresponding Poisson brackets differential equations.10 But as
the momenta H, L2, Lz, which we will call generically l, are also constants
of the motion, we have l? 5 2H/a 5 0, where a is the coordinate canonically
conjugate to l, so H is just a function of l, and

a? 5
H(l)

l
5 Ã(l) 5 const (40)

so

a 5 Ã(l)t 1 a0 (41)

These are the classical motions corresponding to the motion of the wave
packet of the previous subsection. As in this section l is completely defined
and a0 completely undefined due to spherical symmetry, in such a way that
the motions represented in the last equation homogeneously fill the surface
l 5 const (really H 5 const, L2 5 const, Lz 5 const for our case), namely
the usual classical torus of phase space.

Then, Eq. (38) can be considered as the expansion of r(cl)
* (q, p) in the

classical motion just described, contained in r(cl)
n,l,m(q, p), each one with a

probability r*(n, l, m).
Summing up:
(i) We have shown that the density matrix r(t) evolves to a diagonal

density matrix r*.
(ii) This density matrix has r(cl)

* (q, p) as its corresponding classical
density.

9 Even if, for symmetry reasons, m is absent as an index of r0
l (v), we have introduced this

index in r
*
(v, l, m) for two reasons: (i) It may be present in a more general case (such as

the cosmological one), and (ii) it is present in r(cl)
v,l,m.

10 On the contrary, H and L2 do not have quantum canonically conjugated dynamical variables
since their spectra are bounded from below.
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(iii) This classical density can be decomposed into classical motions
where H, L2, and Lz remain constant, answering question (i) of the
introduction.

(iv) Finally, for r → ` the classical analogue of Eq. (18),

H 5
1

2M
p2

r 1
L2

2Mr 2 1 W(r) (42)

shows that in the classical motions we can consider L2 5 0 when r → `.11

Thus the classical motions far from the nucleus can be considered as radial,
answering question (ii) of the introduction.

Finally, as

# d(u 2 u(0))d(w 2 w(0)) du(0) dw(0) 5 1 (43)

where u and w are the usual polar coordinates. Since far from the nucleus
l 5 m 5 0, we can write Eq. (38) as

r(W)
* (q, p) 5 # r*(v, 0, 0)d(H(q, p) 2 v)d(u 2 u(0))d(w (44)

2 w(0)) du(0) dw(0) dv

where d(H(q, p) 2 v)d(u 2 u(0)d(w 2 w(0)) can be considered as the classical
density of the classical particles with radial motions defined by the energy
v and the angles u(0) and w(0). The final classical equilibrium density is thus
decomposed in the densities of radial classical trajectories, as in Eq. (3).

So finally we have an isotropic ensemble of particles in radial motion.
This is the classical statistical limit of our wave function. We have gone from
quantum mechanics to classical statistical mechanics [16]. To single out any
one of the trajectories to obtain a single classical motion is clearly impossible
at the statistical mechanics level since it would break the spherical symmetry
of the initial wave function. But the statistical state is composed of single radial
motions at the classical level, as any population is composed of individuals.

3.3. Localization and Correlations

These phenomena will appear for appropriate potential and initial condi-
tions [4]. If W(r) 5 0, we know that the wave packet will spread, so the real
W(r) must be such that the eventual spreading will be as slow as necessary
in order to see the radial trajectories in the bubble chamber.

11 A close study of the initial conditions, which necessarily are located near the center of the
nucleus, will improve the demonstration of this result. For the sake of conciseness we do
not include these considerations.
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3.4. Discussion and Comments

3.4.1. The Time

We have postulated the global existence of time in Section 2.1. This
postulate was motivated by the fact that this is a global feature of the universe.
But, in order to mimic the cosmological case of the second example, let us
imagine for a moment that our model can be considered as a model of the
whole universe.12 Then it would be impossible to postulate the existence of
time based on an exterior global structure. A way to solve this problem would
be to postulate decoherence through Eq. (12), namely the existence of some
kind of evolution with a final diagonal state which corresponds to the fact
that the universe really ends in a classical state. Then we can define the time
over the classical trajectory labeled by v and l via Eq. (42) as

M
dr
dt

5 !2MFv 2
l(l 1 1)
2Mr 2 2 W(r)G (45)

i.e.,

t 5
1

!2 #
r

0

dr

!v 2 l(l 1 1)/(2Mr 2) 2 W(r)
(46)

Thus we can see the interrelation of time, decoherence, and the elimination
of the uncertainty relations. The usual procedure is to postulate the existence
of time and follow the chain time → decoherence → elimination of the
uncertainty relations. In this case we are using the traditional way of thinking
of classical and nonrelativistic quantum mechanics: time is a primitive con-
cept. But, as we have explained, another chain is feasible: decoherence →
elimination of the uncertainty relations → time, and that would be the chain
that we must use if we consider the whole universe. In this last case we
could postulate (based on obvious observational fact) that the quantum physics
of the universe is such that it has a tendency toward the classical regime
(decoherence 1 elimination of the uncertainty relations). This tendency would
be the primitive concept in this case and time would be a derived concept
in perfect accord with Mach’s philosophy [20] (see also ref. 21). So question
(iii) of the introduction is answered. We will come back to these arguments
in the cosmological case in Section 4.4.3, where we will go further. We will
postulate the existence of a parameter h that at the quantum level will take
the role of time, namely .h& 5 e2iHt.0&, and show that there is decoherence
in this parameter, which therefore becomes a classical one.

12 This will be the case in the first problem. In the second one we will deal with the real
universe and reproduce the same kind of argument.
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3.4.2. Why the Outgoing Solutions?

The answer to this question can be found in one of the essential properties
of the actual state of the real universe: it is time-asymmetric in spite of the
fact that its evolution laws are time-symmetric:

(i) Even if we have incoming and outgoing scattering states, only the
second ones behave spontaneously, while the first ones must be produced by
a source of energy [22].13

(ii) Even if we have advanced and retarded solutions of the Maxwell
equations, the time asymmetry of the state of the universe forces us to use
the latter ones and to neglect the former ones.

(iii) At the quantum level, the space of admissible solutions is not
the whole Hilbert space, but a subspace of this space, where causality can
be introduced.14

Namely, as the laws of physics are time symmetric, they always give us
two t-symmetric possibilities. The universe is t-asymmetric and corresponds to
one of these possibilities.

From what we have said it must be clear that, in order to be completely
satisfactory, the choice must be done in the whole universe, namely it must
be global [22]. Let us only consider case (i); we must only choose outgoing
states answering question (iv).

For our first problem we may use the WKB solution of the equation

d 2c(x)
dx2 1 k2(x)c(x) 5 0 (47)

which is

c(x) 5 [k(x)]21/2 expF6i # k(x) dxG (48)

Then if we write the solutions of Eq. (2) as

cvlm(x) 5 cvlm(r, u, w) 5 Y m
l (u, w)

uvl(r)

r
(49)

the function uvl(r) satisfies the equation

13 Incoming states will transform the stable nucleus into an unstable one. Outgoing states will
radiate the energy produced when the unstable nucleus evolves to a equilibrium state in a
spontaneous way.

14 As causality is related to the analytic properties of wave functions, when we promote the
energy v to a complex variable z, we can choose the admissible solutions as those wave
functions that are analytic and bounded in the lower complex half-plane of variable z, even
if we could choose those that have the same properties in the upper plane (or, more precisely,
such that they belong to the Hardy class function space from below (or above) [27]. In this
way causality is introduced along with its physical consequences: dispersion relation, the
fluctuation-dissipation theorem, the growth of entropy, etc. [17, 19].
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d 2uvl(r)

dr 2 1 2MFv 2
l(l 1 1)
2Mr 2 2 W(r)Guvl(r) 5 0 (50)

If we write

k2
vl(r) 5 2MFv 2

l(l 1 1)
2Mr 2 2 W(r)G (51)

the WKB solution is

uvl(r) 5 [kvl(r)]21/2 expF6i #
r

0

kvl(r) drG (52)

These are the two possibilities produced by our time-symmetric theory.
Then, in order for solution (52) to be outgoing, we must choose the sign 1.
In fact, far from the nucleus, when t → `, r → `, we have kvl(r) → kv 5
1!2Mv and considering the time evolution factor, we have

e2iHtuvl(r) 5 [kv]21/2 exp[2i(vt 2 kvr 1 const)] (53)

and the wave evolution becomes the outgoing unilateral shift:

r 5
v
kv

t 1 const (54)

So question (iv) of the Introduction is also answered.15

4. THE COSMOLOGICAL PROBLEM

4.1. The Model

Let us consider the flat Roberson–Walker universe [23, 24] with a metric

ds2 5 a2(h)(dh2 2 dx2 2 dy2 2 dz2) (55)

where h is the conformal time and a the scale of the universe. Let us consider

15 It is interesting to observe that, following the ideas of ref. 22, this typical outgoing nature
of the shift (which is extremely important in the cosmological models [22]) is only possible
because from the very beginning the configuration space has a characteristic structure: it is
spherically symmetric and this fact defines the asymmetry r . 0, namely the asymmetry that
says that the origin O is substantially different than the sphere at the infinity. Therefore: it
is an asymmetry in configuration space that really introduces time asymmetry [20]. Without
this asymmetry all the treatment would be impossible since the “outgoing” notion itself would
be meaningless, and the choice of the lower half-plane unmotivated (at least in the case
where we consider our system as the whole universe and therefore we have no other physical
phenomena to play with). Therefore the fact that an isolated nucleus radiates and never
receives spontaneously radiation from the exterior is a consequence of the fundamental time
asymmetry of the universe. But if, as a theoretical example, we consider this isolated system
as the whole universe, it is a consequence of the asymmetry of the configuration space of
the model, in complete agreement with ref. 20. In the second example the time asymmetry
has more or less the same origin: the global asymmetry of the universe, as explained in ref. 22.
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a free neutral scalar field F and let us couple this field to the metric with a
conformal coupling (j 5 1/6). The total action reads S 5 Sg 1 Sf 1 Si and
the gravitational action is

Sg 5 M 2 # dhF2
1
2

ȧ2 2 V(a)G (56)

where M is the Planck mass, ȧ 5 da/dh, and the potential V contains the
cosmological constant term and eventually the contribution of some form of
classical matter. We suppose that V has a bounded support 0 # a # a1. We
expand the field F as

F(h, x) 5 # fke2ik?x dk (57)

where the components of k are three continuous variables.
The Wheeler–DeWitt equation for this model reads [compare with Eq.

(1) for the first example]

HC(a, F) 5 (hg 1 hf 1 hi)C(a, F) 5 0 (58)

where

hg 5
1

2M 2 2
a 1 M 2V(a)

hf 5 2
1
2 # (2

k 2 k2f 2
k) dk

hi 5
1
2

m2a2 # f 2
k dk (59)

where m is the mass of the scalar field, k/a is the linear momentum of the
field, and k 5 /fk.

We can now go to the semiclassical regime using the WKB method
[25], writing C(a, F) as

C(a, F) 5 exp[iM 2S(a)]x(a, F) (60)

and expanding S and x as

S 5 S0 1 M 21S1 1 . . . , x 5 x0 1 M 21x1 1 . . . (61)

To satisfy Eq. (58) at the order M 2, the principal Jacobi function S(a) must
satisfy the Hamilton–Jacobi equation
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1dS
da2

2

5 2V(a) (62)

We can now define the (semi)classical time as in Section 3.3 (but now using
an approximate solution only). It is a parameter h 5 h(a) such that

d
dh

5
dS
da

d
da

5 6!2V(a)
d
da

(63)

So

h 5
1

!2 #
a

a0

1

!V(a)
da (64)

which must be compared with Eq. (46), but in this equation the trajectories
are completely classical, while in Eq. (64) only a is classical and F remains
a quantum variable. The solution of Eq. (64) is a 5 6F(h, C ), where C is
an arbitrary integration constant. Different values of this constant and of the
6 sign give different classical solutions for the geometry.

Then, in the next order of the WKB expansion, the Schrödinger equa-
tion reads

i
dx
dh

5 h(h)x (65)

where

h(h) 5 hf 1 hi (a) (66)

Precisely,

h(h) 5 2
1
2 # F2

2

f 2
k

1 V2
k(a) f 2

kG dk (67)

where

V2
Ã 5 m2a2 1 k2 5 m2a2 1 Ã (68)

and Ã 5 k2 and k 5 .k.. So the time dependence of the Hamiltonian comes
from the function a 5 a(h).

Let us now consider a scale of the universe such that aout À a1. We
will consider the evolution in this region where the geometry is almost
constant. Therefore we have an adiabatic final vacuum .0& and adiabatic
creation and annihilation operators a†

k and ak. Then h 5 h(aout) reads
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h 5 # VÃa†
kak dk (69)

We can now consider the Fock space and a basis of vectors

.k1, k2, . . . , kn , . . .& > .{k}& 5 a†
k1a

†
k2 . . . a†

kn . . . .0& (70)

where we have called {k} the set k1, k2, . . . , kn , . . . . The vectors of this
basis are eigenvectors of h:

h.{k}& 5 v.{k}& (71)

where

v 5 o
kP{k}

VÃ 5 o
kP{k}

(m2a2
out 1 Ã)1/2 (72)

We can now use this energy to label the eigenvector as

.{k}& 5 .v, [k]& (73)

where [k] is the remaining set of labels necessary to define the vector unambig-
uously. {.v, [k]&} is obviously an orthonormal basis, so Eq. (69) reads

h 5 # v.v, [k]&^v, [k]. dv d[k] (74)

This is the Hamiltonian that corresponds to (4) in the cosmological case.

4.2. Decoherence in the Other Dynamical Variables

We can obtain the decoherence in the energy as in Section 2. Then, if
we reintroduce the other dynamical variables in Eq. (12), we obtain

(r*. 5 # rv[k][k8](v, [k], [k8]. dv d[k] d[k8] (75)

where {(v, [k], [k8]., (v, v8, [k], [k8]} is the cobasis {(v., (v, v8.}, but now
showing the hidden [k]. This equation corresponds to (14) in the cosmologi-
cal case.

Let us observe that if we use polar coordinates for k, Eq. (57) reads

F(x, n) 5 # o
lm

fklm dk (76)

where

fklm 5 fk,l(h, r)Y l
m(u, w) (77)

where k is a continuous variable; l 5 0, 1, . . . ; m 5 2l, . . . , l; and Y are
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spherical harmonic functions. So the indices k, l, m contained in the symbol
k are partially discrete and partially continuous.

As r†

*
5 r*, then r*v[k8][k] 5 rv[k][k8] and therefore a set of vectors {.v,

[l]&} exists such that

# rv[k][k8].v, [l]&[k8] d[k8] 5 rv[l].v, [l]&[k] (78)

namely {.v, [l]&} is the eigenbasis of the operator rv[k][k8]. Then rv[l] can be
considered as an ordinary diagonal matrix in discrete indices like l and m,
and a generalized diagonal matrix in continuous indices like k.16 Under the
diagonalization process, Eq. (75) is written as

(r*. 5 # U †[l]
[k] rv[l][l8]U

[l8]
[k8]

3 U †[l9]
[k8] (v, [l9], [l-].U [l-]

[k] dv d[k] d[k8] d[l] d[l8] d[l9] d[l-] (79)

where U †[l]
[k] is the unitary matrix used to perform the diagonalization and

rv[l][l8] 5 rv[l]d[l][l8] (80)

where

rv[l][l] 5 rv[l] 5 # U [k]
[l] rv[k][k8]U

†[k8]
[l] d[k] d[k8] (81)

so we can define

(v, [l]. 5 (v, [l], [l]. 5 # U [k]
[l] (v, [k], [k8].U †[k8]†

[l] d[k] d[k8] (82)

We can repeat the procedure with vectors (v, v8, [k], [k8]. and obtain the
vector (v, v8, [l].. In this way we obtain a diagonalized cobasis {(v, [l]., (v,
v8, [l].}. So we can now write the equilibrium state as

r* 5 # rv[l](v, [l]. dv d[l] (83)

which corresponds to (16) in the cosmological case. Since vectors (v, [l].
can be considered as diagonals in all the variables, we have obtained decoher-
ence in all the dynamical variables. This fact will become clearer once we

16 E.g., we can deal with this generalized matrix by rigging the space 6 and using the Gel’fand–
Maurin theorem [26]; this procedure allows us to define a generalized state eigenbasis for
system with continuous spectrum. It has been used to diagonalize Hamiltonians with continu-
ous spectra in refs. 17, 27, 28, etc.
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study the observables related to this vector and introduce the notion of final
pointer basis.

Let us consider the observable basis {.v, [l]), .v, v8, [l])} dual to the
state cobasis {(v, [l]., (v, v8, [l].}. From Eq. (6) and as the v does not play
any role in the diagonalization procedure, we obtain

.v, [l]) 5 .v, [l]&^v, [l]., .v, v8, [l]) 5 .v, [l]&^v8, [l]. (84)

So in the basis {.v, [l]), .v, v8, [l])} the Hamiltonian reads

h 5 # v.v, [l]) dv d[l] 5 # v.v, [l]&^v, [l]. dv d[l] (85)

Now, we can also define the operators

L 5 # l.v, [l]) dv d[l] 5 # l.v, [l]&^v, [l]. dv d[l] (86)

which can also be written, as in Eq. (17),

Li 5 # li.v, [l]) dv d[l] 5 # li.v, [l]&^v, [l]. dv d[l] (87)

where i is an index such that it covers all the dimension of the l.17 Now we
can consider the set (h, Li), which is a CSCO, since all the members of the
set commute because they share a common basis, and find the corresponding
eigenbasis of the set, precise .v, [l]&, since18

h.v, [l]& 5 v.v, [l]& (88)

Li.v, [l]& 5 li.v, [l]& (89)

Of course the Li are constants of the motion because they commute with h.
From all these equations we can say that:

(i) (h, Li) is the final pointer CSCO.
(ii) {.v, [l]), .v, v8, [l])} is the final pointer observable basis.
(iii) {(v, [l]., (v, v8, [l].} is the final pointer states cobasis.
In fact, from Eq. (83) we see that the final equilibrium states has only

diagonal terms in this state (those corresponding to vector (v, [l.), it has no
off-diagonal terms (those corresponding to vectors (v, v8, [l]., (v, [k], [k8].,
or (v, v8, [k], [k8].), and therefore we have decoherence in all the dynami-
cal variables.

17 In principle the matter field F may have any number of particles N. But since we are working
in the final stage of the universe evolution with a , aout, this number is a constant. Then
the number of observables in the CSCO is 4N and the ket in configuration variables read
.h, [x])& 5 .{x}&, where [x] is the space position of the 4N particles.

18 On some occasions we will call h 5 L0 and v 5 l0.
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4.3. The Limit " → 0 and the Classical r(cl)
* (x, k)

Let us restore the notation {l} 5 (v, [l], {k} 5 (v, [k]), as in Eq. (73),
and let us consider the configuration kets .{x}& 5 .h, [x]&. Since we are
considering the period when a , aout the system with Hamiltonian (67) is
just a set of infinite oscillators with constants Vk(aout) that represent a scalar
field with mass maout. Then we are just dealing with a classical set of N
particles with coordinates [x] and momenta [k]. Then, as in Eq. (33), we can
introduce the Wigner function correponding to generalized state .{l}):

r(W )
{l} ([x], [k]) 5 p24N # ({l}.x 1 l&^x 2 l.)e2i[l]?[k] d 4n l (90)

Using the same reasoning used to obtain Eq. (36), we obtain

r(W )
{l} ([x], [k]) 5 &

i
d(LW

i ([x], [k]) 2 li) (91)

where LW
i ([x], [k]) is the classical observable obtained from Li via the Wigner

integral (considering h 5 L0 and including 0 among the indices i). Now, with
the new notation (90), Eq. (88) reads

r* 5 # r*{l}({l}. d{l} (92)

Then if we write

r(W )

*
([x], [k]) 5 p24N # ({r*.x 1 l&^x 2 l.)e2i[l]?[k] d 4nl (93)

we obtain, as in Eq. (31),

r(W )

*
([x], [k]) 5 r(W )

*
(LW

0 ([x], [k]), LW
1 ([x], [k]), . . .) (94)

So finally

r(W )

*
([x], [k]) , # d{l} r(W )

*
([x], [k])d({LW} 2 {l})

5 # d{l} r{l}.&
i

d(LW
i 2 li) (95)

The last equation can be interpreted as follows:
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(i) d({p} 2 {l}) is a classical density function, strongly peaked at certain
values of the constants of motion {l}, corresponding to a set of trajectories
where the momenta are equal to the eigenvalues of Eqs. (88) and (89), namely
LW

i 5 li (i 5 0, 1, 2, . . .).
(ii) r{l} is the probability to be in one of the sets of trajectories labeled

by {l}. Precisely: if some initial density matrix is given, from Eq. (83) it is
evident that its diagonal terms r{l} are the probabilities to be in the states
(v, [l]. and therefore the probability to find, in the corresponding classical
equilibrium density function r(W)

* ([x], [k]), the density function d({LW} 2
{l}), namely the probability of the set of trajectories labeled by {l} 5 (v, [l]).

(iii) As in Eq. (40), let a be the coordinate classically conjugate to l
and let a0 be the coordinate a at time h 5 0; then we obtain the classical
trajectories:

a 5 lh 1 a0 (96)

(iv) Let us now write r*{l} 5 p{l}[a0]. Actually p{l}[a0] is not a function
of a0, it simply is a constant in a0, since a0 is only an arbitrary point and
our model is spatially homogeneous. Then we can write

p{l}[a0] 5 # p{l}[a0] &
i51

d(ai 2 a0i) d[a0] (97)

In this way we have changed the role of a0; it was a fixed (but arbitrary)
point and it is how a variable that moves all over the space. Then Eq. (95) reads

r(cl)

*
([x], [k]) , # p{l}[a0] &

i
d(LW

i 2 li) &
j51

d(aj 2 a0j) d[a0] d{l} (98)

So if we write

r(cl)
{l}[a0]([x], [k]) 5 &

i50
d(LW

i 2 li) &
j51

d(aj 2 a0j) (99)

we have

r(cl)

*
([x], [k]) , # p{l}[a0]r(cl)

{l}[a0]([x], [k]) d[a0] d{l} (100)

From Eq. (99) we see that r(cl)
{l}[a0]([x], [k]) Þ 0 only in a narrow strip around

the classical trajectory (96) defined by the momenta {l} and passing through
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the point [a0] [actually, the density function is as peaked as is allowed by
the uncertainty principle, so its width is essentially O("), since the d-functions
of all the equation are really Dirac deltas only when " → 0]. So we have
proved Eq. (100), which, in fact, is Eq. (3) as announced.19

Then we have obtained the classical limit. When h → ` the quantum
density r becomes a diagonal density matrix r*. The corresponding classical
distribution r(cl)

*
([x], [k]) can be expanded as a sum of classical trajectory

density functions r(cl)
{l}[a0]([x], [k]), each one weighted by its corresponding

probability p{l}[a0]. So, as the limit of our quantum model we have obtained
a statistical classical mechanical model, and the classical realm appears.

4.4. Localization and Correlations

Under appropriate initial conditions the motion can be concentrated in
just one trajectory, showing the presence of correlations in this trajectory [4].
The evolution of the concentration depends on potential V(a). Of course,
our “trajectories” are not only one trajectory for a one-particle state, but N
trajectories (each one corresponding to a momentum (l1, l2, . . . , ln) 5 {l}
and passing by a point (a1, a2, . . . , an) 5 [a]) for the n-particle states.

4.5. Discussion and Comments

4.5.1. Characteristic Times

The decaying term of Eq. (10) (i.e., the second term on the r.h.s.) can
be analytically continued using the techniques explained in refs. 9, 17, and
24. In these papers it is shown that each pole zi 5 vi 2 igi of the S-matrix
(corresponding to the evolution ain → aout [24]) of the problem considered
originates a damping factor e2gih. Then if g 5 min(gi), the characteristic
decoherence time is g21. This computation is done in the specific models of
refs. 24. If g ¿ 1, even if the Riemann–Lebesgue theorem is always valid,
there is no practical decoherence since g21 À 1.

19 In this section, as in Section 2.2, we are faced with the following problem: r(cl)

*
([x], [k]) is

a constant that we want to decompose into functions r(cl)
{l}[a0]([x], [k]) which are different from

zero only around the trajectory (96) and therefore are variables in a. Then, essentially we
use the fact that if f (x, y)5 g( y) is a constant function in x, we can decompose it as

g( y) 5 # g( y)d(x 2 x0) dx0

namely the densities d(x 2 x0) are peaked in the trajectories x 5 x0 5 const, y 5 var, and
therefore are functions of x. This trajectories play the role of those of Eq. (97). As all the
physics, including the correlations, is already contained in Eq. (95), the reader may just
consider the final part of this section, from Eq. (97) to Eq. (100), a didactical trick.
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4.5.2. Sets of Decoherent Trajectories

It is usual to say that in the classical regime there is decoherence of the
set trajectories labeled by the constant of the motion v, [l]. This result can
easily be obtained with our method in the following way.

(i) Let us consider two different states .v[l]& and .v8[l8]& that will define
classes of trajectories with different constants of the motion (v, [l]) Þ (v8,
[l8]). We must compute

^v[l].r*.v8[l8]& 5 (r*|vv8[l][l8])

5 F# rv9[l9](v9[l9]. dv9 d[l9]G.vv8[l][l8]) 5 0 (101)

due to the orthogonality of the basis {(v, [l]., (v, v8, [l].}.
(ii) But if we compute

^v[l].r*.v[l]& 5 (r*|v[l]) 5 F# rv9[l9](v9[l9]. dv9 d[l9]G.v[l])

5 # rv9[l9]d(v 2 v9)d([l] 2 [l9]) dv9 d[l9]

5 rv[l] Þ 0 (102)

The last two equations complete the demonstration. We will discuss the
problem of the decoherence of two trajectories with the same {l} but different
[a0] in Section 4.5.4.

4.5.3. A Discussion on Time Decoherence

It is well known that one of the main problems of quantum gravity is
the problem of defining the time [29]. A poorly studied feature of this problem
is that there must be a decoherence process related to time since time is treated
as a classical variable. In this subsection, using the functional technique, we
will give a model that shows that this is the case (but we must emphasize
that this subject is not completely developed).

Let us postulate that there is a parameter h such that the quantum states
evolve as20

.h& 5 e2ihh.0& (103)

We must compute ^h.r*.h8&, where .h& and .h8& are two states of the

20 Of course h is the conformal time of Eq. (65), since (103) is a consequence of (65). But
now we have postulated this last equation and we are searching for the quantum properties
of h.
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system for different times. We do not know if ^h.r*.h8& will decohere or
not. If it decoheres, we can say that the parameter h is classical. .h&^h8. can
be considered as an observable; then

^h8.r*.h& 5 (r*|h&^h8.) (104)

But

(v|h&^h8.) 5 (v.e2ihh.0&^0.eihh8) 5 [eihh8(v.e2ihh]|0&^0.) (105)

Now, for any observable O we have

[eihh8(v.e2ihh]|O) 5 [eihh8(v.e2ihh]ZF# Ov8.v8) dv8

1 ## Ov8v9.v8, v9) dv8 dv92
5 [eihh8(v.e2ihh]ZF# Ov8.v8) dv8 1 . . .

5 (v.F# Ov8e2iv8h.v8)eiv8h8 dv8G2
5 e2iv(h82h)(v.O) (106)

where the second term disappears since (v.v8, v9) 5 0. Thus

(v|h&^h8.) 5 e2iv(h82h)(v|0&^0.) (107)

So now we can compute the following two cases:
(i)

^h8.r*.h& 5 (r*|h&^h8.) 5 F# rv(v. dvG|h&^h8.)

5 # rve2iv(h82h)(v|0&^0.) dv → 0 (108)

when .h8 2 h. → `, due to the Riemann–Lebesgue theorem.
(ii) Analogously,

^h.r*.h& 5 # rv(v|0&^0.) dv Þ 0 (109)

So we have time decoherence for two times h and h8 if they are far
enough apart.
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This result is important for the problem of time definition, since in order
to have a reasonable classical time this variable must first decohere. The
above result shows that this is the case for h and h8 far enough apart,21 but
also that for closer times (namely such that their difference is smaller than
the Planck time) there is no decoherence and time cannot be considered as
a classical variable. Classical time is a familiar concept, but the nature of
nondecohered quantum time is open to discussion. We remark that we have
followed the second line of thought of Section 2.3.1: we have supposed the
existence of an evolution e2ihh, where h is only a parameter. We have proved
that decoherence appears and find that h behaves like a classical variable.
Maybe this is the better way to introduce the classical time: to postulate a
“quantum” h and find its properties. Moreover, we have proved that the
second approach of Section 2.3.1 can also be followed.

4.5.4. Decoherence in the Space Variables

Now that we know that there is time decoherence, we can repeat the
reasoning for the rest of the variables a at time h 5 0 and change Eq. (103) to

.[a]& 5 ei[a]?[I].0& (110)

We will reach the following conclusions:
(i)

^[a].r*.[a8]& → 0 (111)

when .a 2 a8. → `.
(ii)

^[a].r*.[a]& Þ 0 (112)

Therefore there is also decoherence between two trajectories with the same
{l} but different [a0].

These facts complete the scenario about decoherence and the final classi-
cal limit. An analogy of Section 3.3.2 in the cosmological case can be found
in ref. 21.

5. CONCLUSION

We are convinced that the method of refs. 9 and 10 is the best way to
study both the Mott and the cosmological problem and to find analogies and
differences between them. We hope that the reader will share our conviction.

21 Using the method of Section 4.3.1, we can compute g. Decoherence will take place for .h 2
h8. . g21.
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For the important cosmological problem we have shown that after the
WKB expansion and decoherence and the final classical limit process, (i)
our quantum model has a defined classical time h and a defined classical
geometry related by Eq. (65); (ii) decoherence has appeared in a well-defined
final pointer basis; and (iii) the quantum field has originated a classical final
distribution function [Eq. (100)] that is a weighted average of some set
densities, each one related to a classical trajectory. The weight coefficients
are the probabilities of each trajectory.

We can see that if instead of a spinless field we coupled the geometry
to a spin-2 metric fluctuation field, the result would be more or less the
same. Then the corresponding quantum fluctuations would become classical
fluctuations that would correspond to matter inhomogeneities (galaxies, clus-
ters of galaxies, etc.) that will move along the trajectories described above.
This subject will be treated elsewhere in greater detail.
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